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The balance laws for micromorphic continua of degree 1 are derived by means 
of classical statistical mechanics. The equations derived by Eringen et aL 
[Continuum Physics, Vol. IV (Academic, New York, 1976)] are obtained in a 
slightly generalized form. Explicit expressions for the stress, the couple stress, the 
spin production, and the heat flux are given in terms of microscopical variables. 
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1. INTRODUCTION 

In this paper we consider materials which are composed of deformable 
molecules. Such materials are called micromorphic. Their theory was devel- 
oped about 15 years ago using arguments of phenomenological thermody- 
namics (cf. Eringen(0). For the special case of a micromorphic continuum 
of degree 1 the following quantities are used to define the macroscopical 
state of the continuum: the mass density O, the field of microinertia 0i, the 
local momentum pv, the (generalized) spin density O_o, and the internal 
energy p. Og is called generalized spin, because its antisymmetrical part 
gives the internal angular momentum of the microcontinua that build up 
the material, and its symmetrical part gives information about the deforma- 
tion of the microcontinua. 

For these fields the following balance laws were derived (cf. Erin- 
gen(O): 

~--/p + v .  (pv) = o (1.1) 

0 (1.2) ~-7 (P/) + v .  (v | oi)  = o i .  ,,+ p( i .  ,,)T 

i AG Theoretische Physik, Universit/it Paderborn, 479 Paderborn, West Germany. 

645 
0022-4715/81/0800-0645503.00/0 �9 1981 Plenum Publishing Corporation 



646 Oevel and Schroter 

0 (or )  + V .  (v | pv - _t) = r 
0t 

~ t  (po)  + V- ( v |  ~ )  =_v. p i ._vT+ t - -  S+  1 

Vl ~ Pik 
O O (VrnP~ + qm) = t k l -  + t*mki O-t (pc) + ~x  m Ox k ~xr. 

(1.3) 

(1.4) 

+ "~k(*k,- t,,) + h (1.5) 

In  these equations we used the following notat ion:  v is the generalized 
angular velocity or gyrat ion tensor, t is the stress tensor, f are b o d y  forces 
due to external fields, /z is the generalized coupled stress, s = s  T is the 

microstress average, / are body  couples due to external fields, q is the heat 
flux, and h is the heat supply due to external fields. 2 It  is the purpose of this 
paper  to give an interpretation of all these quantities in terms of microscop- 
ical variables. Moreover  we want  to derive Eqs. (1.1)-(1.5) f rom a kinetic 
model  of a micromorphic  material and to find representations for the fluxes 
t, ~t, and q and for the microstress average s_. 

2. THE MODEL 

In what  follows we will use the kinetic model  introduced in Ref. 2. We 
consider a system of n molecules, each composed  of v particles with the 
masses rn ~. The state of molecule k is given by the positions 1~ k~ and the 
velocities 9k~ of the subparticles a = 1 . . . .  , v. Equivalently we may  choose 
the center of mass R k, its velocity V k, and 2 ( v -  1) internal coordinates, 
e.g., 

Rk~ : =  I~ k~ _ 1~1 
v k ~ : = ~ k ~  9k, ( a = 2 , 3  . . . . .  v) (2.1) 

Then, using the denotat ions R k~ :=  R k and V k~ : =  V k a molecule is de- 
scribed by the set of variables 

X k :=  (R kl . . . . .  Rk~,v kl . . . . .  V k~) 

Moreover  we introduce the distances and the relative velocities between 
particles and center of mass, i.e., 

Ar k~ = I~ k~ _ R ~ 
Avka = ~ka __ V k (2.2) 

2/~ corresponds to the momentum - - t  km!  of the microstress in Ref. l; the symmetric s 
corresponds to the microstress average t introduced in Ref. l; in (1.5) the intrinsic surface 
energy is omitted. 
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The total mass of a molecule is denoted by m. We assume three kinds of 
forces to act on a particle: 

kc~ 

1. f l/~: mutual force between the particles a and/9 of two different 
molecules k and l. 

2. ~'k;: mutual force between the particles a and fi of the same 
molecule k. 

3. ~k~: force on particle (k, a) due to external fields. 
ka ks 

The forces fib and ~'k; are assumed to have potentials u lz and ~7 k~. We 
denote the total force acting on particle (k, a) by 

/ = 1  alfl=l f l = l  

We define the potential energy of a particle by ascribing half of the energy 
of a pair to each of the interacting partners by 

= ~ u '/~ + ~7 k'~ ( 2 . 4 )  
t=l /~=1 /~=~ 

For the n-molecule distribution function of our system 

F(.)(X 1 . . . . .  X"; t) 

Liouville's equation holds: 

I ~ t + k = l  ~ ~=l~(gk'~'VRk~+ 1--kFk"'VO~ F ( " ) ' = O r n  ~ (2.5) 

In this equation the arguments X k of F (") are regarded as functions of the 
variables 1~ k~ and 9 k~. 

Thus far the distribution function F ("~ is restricted only by the 
condition of nonnegativity and integrability. It describes an ensemble of 
systems rather than a single system. In order to utilize the formalism for a 
derivation of the balance equations of continuum mechanics one has to 
impose further conditions on F ("~. Therefore in what follows we assume 
that F ("~ is macroscopically dispersionless. This implies that the mean 
value of a macroscopical observable A, i.e., 

( a  ~ = f AF("~ g X '  . . . 4 X "  (2.6) 

is identical with the value of A measured at any single system of the 
ensemble described by F (") . Hence for appropriately chosen observables A 
we may identify (A)  with the quantities entering the balance equations of 
continuum physics. The balance equations themselves are given by the 
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equations of motion for the mean values (A) ,  i.e., 

(A) . . . .  
k = l a = l  ~ D/a  

which are derived easily from Liouville's equations. 

(2.7) 

3. THE MACROSCOPICAL FIELDS 

In this section we introduce in our model those quantities which 
correspond to the fields of the phenomenological theory briefly discussed in 
Section 1. To this end we use as a guide the fact that the microcontinua 
introduced by Eringen et al. ~1) correspond to the molecules of our model. 

As usual we define the density of mass and the linear momentum by 

(~=1 m8 ) p = (R k - x) (3.1) 

and 

p v =  ( g = l  ~ mVkS(Rk--x)l (3.2) 

respectively. The microinertia pi is given by 

(3 , 3 )  

The generalized spin Off is defined by 

p g =  ~ Ar k~ | Av k" 8(R k - x) (3,4) 
1 

so that its antisymmetric part gives the internal angular momentum of the 
material, while its symmetric part gives information about the deformation 
of the molecules. 

In what follows we assume that the intramolecular forces are such that 
the molecules do not degenerate to dumbbells. Consequently the matrix of 
the components of the tensor / is nonsingular. Hence we may introduce the 
so-called gyration tensor _~ by 

T _a = u. i (3.5) 

On a microscopic level the gyration tensor v can be introduced as follows. 
Instead of using the velocities ~k~ of all subparticles of a molecule we may 
use "collective" variables s ~k, etc. such that 

9k, = V k + _k. hrk~ + s : Ark~ | Ark~ . . .  (3.6) 

holds. If the molecule is a rigid body, the right-hand side will stop after the 
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second term and _~ will be the antisymmetric angular velocity of the 
molecule. But in general I, k is not antisymmetric for a deformable molecule, 
and terms of higher order are needed. In this paper we want to consider 
materials for which the tensor _~k is the only collective variable, i.e., for 
which the relation 

Avk~ = _~k. Ark,~ (3.7) 

holds. Such materials are called micromorphic of degree 1. If ~k is antisym- 
metric, i.e., if it describes a rigid rotation, the material is called polar. To 
simplify further calculations we introduce the additional assumption that 
there is no chaos among the molecules concerning their rotation and 
deformation, i.e., that the generalized angular velocities ~k of the molecules 
form a macroscopically smooth field _~(x; t): 3 

t) (3.8) 

This assumption can be incorporated into the theory by using the distribu- 
tion function F (n) of the special form 

F(n)( X1 .... ,Xn;t) =ff(~l" IX 8(2~C"--s " 8 r ~ )  (3.9) 
k = l  . . . n  
Or . . . P  

where /7(~) is a function of the positions of the particles and of the 
velocities of the centers of mass. Thus the tensor field ~ is used to describe 
the internal state of the medium. The assumption is physically motivated, 
i.e., when considering liquid crystals where macroscopic areas with well 
oriented molecules exist. The most general equations of balance for 
micromorphic materials of degree 1 are stated without proof in Appen- 
dix B. 

We now define the internal energy pc by 

9c=( ~ [lm(vk--v)2+ ~ Uk"] ~=1 (3.10) 

This quantity is invariant under Euclidean transformation 

x* = __O(t). [x - x0(t)], O - ' = _ Q  r (3.l l)  

of the frame and the following equation holds: 

0, + 0v- v + : ( 0 i  _T) 

= ( ~' ( ~ lm,~rk~ ~rk~ Uk,) X)) (3.12) 
\ k = l \ a = l  "~ " + ~ ( R k - -  

3 This does not essentially restrict the theory; we only avoid the appearance of certain flux 
terms in the balance laws of Section 4. Moreover, this assumption is physically motivated, 
e.g., when considering liquid crystals, where macroscopical areas with well-oriented mole- 
cules exist. 
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Hence we obtain the total energy by adding the internal energy pc, the 
kinetic energy �89 #v- v of the macroscopical motion, and the rotational part 
�89 :(p/.gr) of the energy. Thus definition (3.10) is motivated. 

4. THE BALANCE LAWS 

After having defined the macroscopical fields p, v, i, _o, and e, we wilt 
use Eq. (2.7) to derive the balance laws for those quantities given by 
(1.1)-(1.5). 

4.1. Balance of Mass 

With 

(2.7) yields 

A = ~ m S ( R i - x )  
l=1 

= o  - -  �9 - 

k = l a = l  l=1 

So the well-known equation of continuity 

0 
~ o + V x. (ov) = o 

holds. 

4,2, 

With 

l = l  

l = l  

and (2.7) we obtain 

( 0 / )  = 

Balance of Microinertia 

-~m ~ Ar ~ | Ar t~) 8 (W - x) 
,8=1 

(m~l~ #~ | 'B) - mR' | RI]8(R/- x) 
B=l  

k = l a = l  /=1 ,8=1 

(4.1) 

(4.2) 

xS(RZ- x)]) (4.3) 
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Since 

"0 k~- VR,o-  ~ W ~" V~,o (4.4) 
a = l  a = l  

holds, where R k~ and V k~ are the variables defined by (2.1), we get 

By denoting 

: = (V k - v) m ~ Ar ~ | Ar k~ 3 (R k - x) (4.6) 
k = l  =1 

we obtain 

0 
o-5 (o_/) + Vx. (v | oL+ ~ )  

--(~__l(,~__ m'~Ark'~| 

Compared to Eq. (1.2) we now have found an additional flux of micro- 
inertia 9)?. This kinetic flux does not appear in the theory of Eringen et 
al., (1) because that theory implies that the velocities of the microcontinua 
give a smooth macroscopical field. If we presume a well-ordered motion of 
the molecules according to 

v k = v(R k, t) (4.8) 

we will find 

__~_~ -- 0 (4.9) 

4.3. Balance of Momentum 

With 

A = ~ m V 1 3 ( R  t - x )  
I = 1  
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and (2.7) we obtain (cf. Ref. 2) 

0 < ~ mVk(V k VRk)d(R k X)> ~-7 ( 0 v )  = �9 - 
k=l 

This can be written in the following form: 

a - s ( o v ) + V x ,  p v |  k = l  - - - 

___~ f/fl ~ (R k _ x) + fka8 (R k - x) (4.11) 
k,l=l a,,8= 1 k=l a=l  

because the intramolecular forces ~.jk; vanish. The external forces are 
denoted by f: 

f := -~ 8(W - x (4.12) 
1 

ka 
The average over the intermolecular forces f/~ can be transformed into the 
divergence of a tensor field by resummation and use of formula (A.2) of the 
Appendix: 

( ~-~ ~ f t~8(Rk-x)>=(  ~ ~ f'~ 1 [8(Rk-x)-8(R/-x)]> 

( f0 ( ~ , 1  ' ( ~_] k,~) = V x  " _ 2 .  (R k _ R  l ) |  fz/~ 
k,l= 1 a,,8 = 1 

(4.13) 
Thus using the abbreviations 

-tkin 5 =  --< k=, ~ m(Vk- V) | (vk -  V)8(Rk-  x)> (4.14) 

t i n t : = - ~  ~-](Rk-Rt)| ~ f t P } 8 [ R k - x - ~ ( R ~ - R  t) d~ 

( 4 . 1 5 )  

we get the balance of momentum 
0 _tkin tint) 0--/(pv) + V x �9 (or | v - - _ = f (4.16) 
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So we have derived Eq. (1.3) and have obtained a representation of the 
stress tensor in terms of microscopical variables. 

4.4, 

With 

Balance of Generalized Spin 

~(~m~ ) A = |  l/~ 8 ( R Z - x )  
l = 1  - 

and with the relations 

(,~_l l-~Fk'~'V;cko)vl=l(~=lFk'~)dklm,~ 
we obtain from (2.7) 

3t (p o) - Vx" 1Vk | ~= ] m~ Ark" | ivk~ (Rk 

(4.17) 

(4.18) 

(~t ~ ~ ) ) + ~, l~k~|174 V k~ 8(Rk--X) (4.19) 
k = l \ a = l  = 1  

Hence we find 

a-~(o_o)+Vx, vN0_o+ l(Vk-v)| ~m~r174 k~ 8(Rk--x) 

Let us introduce 

2 = N ( V k - v ) |  Ar k~| k~ 6(R k - x )  (4.21) 
k = l  
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as the kinetic part  of the spin flux. Assuming 

we see that 

holds. Moreover  we find 

/Xv ~" = ~ ( R  k, t ) .  ~ l~  ~ (4,22) 

kin T 
= ~32-v (4.23) 

Splitting up the forces F g~ we obtain from (4.20) 

0 ~ x ( u  @ p O. + _~kin) ~-S (0_o1 + 

= s p/" _ r +  Ar ~" | f lBS(Rk -- x) 
k,l= l ct,fl~ 1 

+ y~ a r  ~o | fk;8(R k - x)  
k = l  a, f l=l  

The  external (generalized) couples are denoted by 1: 

Now we rewrite the momen tum of the intermolecular  forces: 

k, l= l a , f l= l  

= ! Ark~ | f z/~ [ 8 (R k - x) - 8 (R' - x) 
2 k , l= l  a , f l ~ l  

= !  ~ Ark~| 
2 k,l=l ot,fl=l 

+ 2 ( Arks - Arl~) | f '~8(  Rz -- x) (4.27) 
k , l = l  c~,fl = 1 
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With the formulas 

8 ( R  k - x)  - 8 ( R / -  x)  = - V x ' s  - R ' ) 6 [ R  k -  x -  ~ (R k - R')]d~" 

8 ( W -  x ) =  V x . s  k -  W)6[R k -  x -  ~(R k -  R')]d~ 

which are derived in the Appendix we obtain 

Ad ~ | f ~ 8 (W - x) 
k , l=  l a , f l= l 

- 21Vx'fo~ ~ (R~-W)| ~ [~e~(l-~)+A~'~] | 
k , l=  1 o~,fl = 1 

x 8JR ~ - x - ~(R ~ - W)I  ) a~ 

1s ~ k ( " k c ' - " l f l ) @ f ~ t ~ [ R k - - x - - ~ ( R k - R l ) l ) d ~  +g 
k , l = l  ~ , B = I  

k , l = l  a,,8 = 1 
(4.28) 

The first term on the right-hand side of this equation is a generalized spin 
flux due to the intermolecular forces: 

int'-- 1s 1 ~ (Rk-R/) (~ k [Ark~(1-~)-I-ArZB~] | --g 
k,l  = I a,fl  = 1 

• eEre  - x - ~(l~ - R')]  ) d~ 

(4.29) 

The last identity can be derived by using the integral transformation 
~---~ 1 -  ~ together with the exchange of the summation indices (k,a)+--~ 
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(l, /3) and taking into account 
ks lfl 

f l~ = _ fk~ (4.30) 

This representation of the spin flux is a generalized form of formula (2.23) 
in Ref. 2, where the antisymmetric part of (4.29) gives the flux of the proper 
spin. The last term on the right-hand side of (4.28) is the interaction part t int 
of the stress tensor. Collecting all terms we find the following balance of 
generalized spin: 

(v | p_~+ /z kin i~t)  
 -70o-) + Vx �9 _ + 

= ~'" pL" u T + t i - ~ +  1 

+ 3  
k,t= l a,fl= l 

The last two terms are represented by introducing the tensor s: 

1 fool( ~ ~ (~ka__ ~IB)@ fl~8[Rk X - ~(R k - R l ) l )  d ~  s : =  - 2  
k,l= l a , f l = l  

Ar k~ | f kh~ 8 ( R  k - x) (4.32) 
\ k = l \ a , f l = l  

s is a symmetric tensor, because the antisymmetric parts of 
ka ka lfl 

and 
t ,  z ,  

~,fl = 1 a,fl = 1 

give the vanishing total momenta of forces between two molecules and 
within a molecule, respectively. So we find 

= /,'" p / .  pT..~ t i n t  S_.-~- 1 (4.33) 

This verifies (1.4) if we take into account that with assumption (4.8) (which 
is implied in Ref. 1) the kinetic stress t kin vanishes so that t int is the total 
stress tensor. 
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4.5. Balance of Energy 

With 

A :  -~ 
1=1 /~=1 

l# 
_ ~ 1 um~8(R t_ x) l,m=! B,'y= 1 

1 ff~8(R'- x) (4.34) 
l=1  fl, y = l  

and (2.7) we obta in  

( I t/ a-~ (o~) . . . .  
k = l l = I  B=1 J \ ~ = l  

+ E 0 ~  V~ko E g"m' 
k = l  L \ a = l  ]\l,m=l fl,~,=l 

l = l  B,~,= 1 

q- I ~k:la=l ~ 1-~Fka'VVk~ ~ �89 8(RI-X)) ma 1:1 
= : A  + B + C (4.35) 

The  first te rm on the r ight-hand side can be writ ten as 

----- - -  V x �9 (Vps q- qkin) q_ t kin . (~7 @ V) ( 4 . 3 6 )  

In  this equat ion the kinetic heat  flux qkin is def ined by 

qkin :=  -- V) m ( V  k - v) 2 + U k'~ 8 (R k - x) (4.37) 
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Taking into account the relations 
lfl ket ka 

V •*. U mr = - -  f mr  3k  l (~a,e - -  f IB 3k  m r 

V fe~ r = _ fkr 3kZ3" _ fk; 3k~3~'~ (4.38) 

we write the second term on the right-hand side of (4.35) in the following 
form: 

B = - ~  k,z=i.,B=l 

_ 1(2 k=l ~ ~,B=I ~ ( A v ~ -  AV~r (4.39) 

The last term C yields 

c k v) 8(R 
= k = 1 - -  " 1 F~ - x) 

= V k " f l/33 (R k - x )  - v"  f t ,  3 ( R  k - x )  

k , l=  1 ot,fl = 1 k , l =  1 ct,fl= 1 

+(~=l(Vk--v)'(a~__lfka)t~(Rk--x)) ( 4 . 4 0 )  

The last term is the heat supply h due to external forces 

h := ( ~= (Vk-- v) . ( ~= 'k~)3(Rk -- x)) (4.41) 

ka 

The average over the intermolecular forces f t/~ can be written as divergence 
of the stress tensor _t int . So we get 

C =  ~ ~ v k . f / B 3 ( R k - x )  - v ' ( V x ' _ t l n t ) + h  (4.42) 
k , l =  l a , f l = l  

Adding B and C we find 

- -  V ' ( V  x " t i n t )  + h ( 4 . 4 3 )  
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With the assumpt ion  (3.8), i.e., 

Avk~ = p. A1 -k~ 

B + C can  be writ ten in the following form:  

k , l=  l a , f l ~  l 

- g:  A1 ~ | N S ( R  g - - v .  ( 7  x �9 .~ h (4.44) 
I 

k = l  a , f l = l  

F r o m  the ba lance  of spin we see that  

E ~ Ar  | f,B 8 (R  ~ - x) + ~r  ~ | P ; 8 ( R  ~ - x) 
k , l = l  a , f l = l  k = l  a , f l = l  

= - -  V x  " .._~.int..[_ t i n t _ _  S_. (4.45) 

holds. Consequent ly  we have  

1 (9~o ~"~). f ' ~ ( R  ~ x) s+c= ~ ~ ~ + 
k , l ~  l a , f l= l 

+ : (Vx-  + 

- v "(V x �9 tint) + h (4.46) 

The  first term on the r ight-hand side of (4.46) can be t rans formed by  
resummat ion :  

= ~ ,k~,.  fz[~ 1 [8 (R  k _  x) - 8(R'  x) ]  
k,l= 1 ~,/~= 1 2 

_- -Vx. ~ 
k , l ~  l a , f l= l 

(R k - W)(V k + Av k~) 

�9 f 'BS[R  k - x - ~ ( a  k - R' ) ]  d~ (4.47) 

Collecting all terms we obtain  the ba lance  of energy (written in componen t s  
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in a Cartesian frame): 

3 (vio C + qkin int int X 

- R )iVj ~j'r ax;  2 (R k t "ko 
k,l=l a,/3= 1 

x 8[R ~ - x -  ~(R ~ - R ' ) ] )  d~ 

Ol)j int ~Pkj =/ ,k in  + tint) \-9 - -  - - t ~ i j k - -  -l'Pij(Sji-- l)nt)-l- i OX i (4.48) 

Adding the last three terms on the left-hand side of this equation we define 
the interaction part of the heat flux by 

q~m=lf01(k, ,=  ~I(RK-Rz)~,B ~=' [VK--v+Avk~(2~--t)]  "f~; 

Thus we obtain 

�9 . .  8[R k -  x -  ~(R k -  R/)])  d~ (4.49) 

~l  (pE) + ~ (Vip~ -t- qkin .1. q)nt) 
~X l \ 

01)j int 0PKj + p~(sji _ tj2t) + h (4.50) = (, in + t;nt) 0x  i 31 '  

This is Eq. (1.5) if one takes into account that in Ref. 1 no kinetic fluxes 
appear because (4.8) is implied there. 

5. SUMMARY 

With the help of a kinetic model of a micromorphic material the 
balance laws of such a medium have been derived. The well-known 
equations (1.1)-(1.5) are verified for a medium of degree 1, taking into 
account kinetic fluxes which have been neglected in former papers about 
micromorphic media (see Ref. 1). Representations of stress, couple stress, 
and heat flux--already given in former papers(3-5)--are generalized for the 
micromorphic case; a representation of the symmetrical tensor s_ has been 
found. 

In the same way as is done in this paper a kinetic theory of materials 
of higher degree could be made; the restriction (3.8) can be dropped. 
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APPENDIX A 

Obviously the following equations hold: 

l d  
- V  x ' f 0 1 y S ( z - x - ~ y )  d ~ =  - f 0  ~ 8 ( z - x - ~ y )  d~ 

= 6 ( z -  x)  - 8 ( z -  x -  y) 

--  V x  "~01~y(~(Z --  X --  ~y )  d ~  = - f 0 1 ~  (~(z - x - ~y)  d ~  

= [~8(z - x - ~y)]~ - f o  18(z - x - ~y)d~ 

= 6 ( z -  x -  y) - f o l 6 ( z -  x -  ~y)d~ ( i . 1 )  

Putting y = R k - 11l; z = R k we obtain 

6 ( R  k - x) - 8 ( R  ! -  x) = - V x . f o l ( R  ~" - R t )8 [R k - x - ~(R k - R/)] d~ (A.2) 

8(R t - x) = V s "fo l'~(Rk - R ' )8  [R k - x - ,~(R k - R0] d,~ 

+ f018(R k - x - ~(R k - Rt ) )d~  (A.3) 

APPENDIX B 

We now want to state the balance laws for a degree l medium in their most  general form 
by dropping assumption (3.8). The calculations are unpleasant  but  straightforward and of 
exactly the same type as those already given in the paper, so we only state the results. 

Of course we will keep the definitions (3.3) and  (3.4) of microinertia pi and  generalized 
spin p_a, and again we will define the macroscopical gyration tensor v by Eq. (3.5). If this 
macroscopical v is not  to describe the rotation of the molecules directly via (3.8), we will have 
to redefine the internal energy: 

With this new pe equation (3.12) holds without assuming (3.8), so the more general form (B.1) 
of the internal energy if motivated. 

If we check the calculations for the balance laws, we see that the continuity equation, the 
balance of microinertia, and the balance of linear m o m e n t u m  remain unchanged.  Even the 
balance of generalized spin holds without many  changes, only (4.22) and (4.24) do not hold 
any more. 

Defining t~ ki" by (4.21) as before, we see that the kinetic flux now splits up into two parts 
so that (4.23) has to be rewritten in the following form: 

kin : ~ .  T +  ~ (V~ , )  | ( ~ k _ _ O .  ( 2 m ~ 1 7 6  | a ~  o 8(~k - x) 
- -  k = l  \ a = l  

kin 1 kin 2 = ~ + ~ (B.2) 
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Equation (4.24) has to be modified as well. Defining a symmetrical tensor 

we obtain the balance of spin: 

~(pO')"l-  V x " (u kin' "['- jts q'-,_~_~ int) = ~ "  O/'-" PT-[-Xq-_/int-- Sq-/ (B.4) 

where ]~int, tint S, and l are defined as before. 
Because of the appearance of an additional term in the definition of the internal energy 

9r its balance law gives us more trouble. If we go through the procedure of 4.5 modifying the 
calculations where necessary we find 

tint] ~ 61)ml -~8 (p,) + --8x8 i (Vipr = \(tkin -{--9 ~ ] ~X/ -- ( p'k~n 2 + ]~/jk)int ~X i 

"1- Pij( Sji int - t)e - X ~ )  + h ( B . 5 )  

Here qint, _tkin, -tint, --~int' and s are defined as before, 2 kin 2 is given by (B.2) and _X by (B.3), 
whereas the kinetic flux qkin and the heat supply h had to be redefined by 

_ n + ~ m '~ ~k_  ) ) 8 ( R k _ x ) /  

h =  \ k = , \  ( L ( V k - v + a = ] L  ((~--k--s (B.6) 
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